

Cerebral organoids from patients with a neurodegenerative and progeroid syndrome

Miria Ricchetti

Les Rencontres du GDR Organoides 2nd December 2022

Progeroid diseases

Hutchinson-Gilford progeria (HGPS)

Progressive diseases

48 yr

Mutations known since decades \rightarrow how do they promote ageing? Provide clues on normal physiological ageing?

Cockayne syndrome and UVSS

mutation: CSA or CSB

mutation: CSA or CSB

Working hypothesis

CS progeria and neurodegeneration are due to mitochondrial dysfunction and transcription reprogramming and not DNA repair defects

CSA and CSB are multifunctional:

- Repair of UV damage (by TC-NER)
- Transcription
- Chromatin remodeling
- In mitochondria

Strategy

A mechanism for Cockayne syndrome

- mitochondrial dysfunction in CS
- mechanism identified
- rescue molecule (MnTBAP)

CSB depletion triggers replicative senescence

replicative senescence

Crochemore et al, Nature Comms, 2019

CS epigenomic signature

Genome-wide DNAm in patient-derived fibroblasts

Crochemore et al, BioRxiv 2021_445308 and in revision (collab. C. Franceschi)

CS shares differentially methylated genes with regular ageing

CS: 1817 DMRs

functional analysis

Overcome limitations of CS experimental models

- Mouse models do not recapitulate the disease (no precocious ageing, no neurodegeneration)
- Rat models (poor genetics) not progeroid

CS heterogeneity & poor genotype/phenotype correlation

The same homozygous mutation may results in different CS forms

Cockayne syndrome

- Animal models poorly recapitulate the disease
- Large clinical heterogeneity (reason unknown)

Need to generate patient-derived cellular models

Patient-derived iPSCs and cerebral organoids

Isogenic iPSCs and cerebral organoids

To address the issue of the mutation/genetic background in the severity of the phenotype

Neurodegenerative conditions in Cockayne syndrome

CS is the only severe progeroid disease displaying neurodegeneration

- Microcephaly
- (Hydrocephalus)
- Progressivee hearing loss
- Cognitive deficit
- Spastic ataxia
- Pigmentary retinopathy
- Optic atrophy
- Hypomyelination
- Calcifications

(putamen/cortex/dentate nuclei)

Severe progressive brain atrophy

(supratentorial white matter/cerebellum/ corpus callosum/brain stem)

Cerebral organoids (COs)

Modified from Chiaradia & Lancaster (Nature Neurosciences 2020, 23: 1496)

Procedure whole-brain organoids

Adapted from Lancaster et al, 2013

Multiple methods and types of cerebral organoids

Multiple methods and types of cerebral organoids

Neuroectoderm

Neuroepithelium

brain organoid

Embryoid

bodies (EB)

hPSCs

Cerebral organoids culture

Chiara Cimmaruta

iPSCs quality control

Generation of whole-brain cerebral organoids

Chiara Cimmaruta

Progenitor cells and neural rosette-like structures in COs

VZ, ventricular zone

Tara Fournier

Neural differentiation in cerebral organoids

Control (BJ) D42

Altered neural differentiation in CS COs (not shown)

Tara Fournier

Procedure whole-brain vs. dorsal forebrain organoids

Adapted from Velasco et al, 2019

Neural rosettes in guided-COs

Ki67 SOX2 DAPI

Control (BJ) Day 35

- Disrupted organization of neural rosettes in CS guided-COs
- Altered neurogenenesis in CS guided-COs

(not shown)

Tara Fournier

Pipeline to perform drug tests in cerebral orgnoids

Acknowledgements

Collaborations

- F. Yates-F (iPSC & organoids)
- L. Bally-Cuif, IP (neurodevlopment)
- A. Sarasin-F (CS expert)
- V. Laugel-F (CS clinician)

M. Berneburg-D (metabolism, CS clinician)

C. Franceschi-I (DNAm/ ageing)

S. Horvath-US (methylation clock)

